🌙

Master AI & Machine Learning

From beginner concepts to advanced deep learning

Learn Python, TensorFlow, PyTorch, and how to build real-world AI applications with our comprehensive, interactive tutorials and guided learning paths.

AI Machine Learning Concept

Solution Paths

Choose your learning journey based on your experience level and goals

Basic Equations

Start your AI journey with fundamental concepts and easy-to-follow tutorials.

  • Python Programming Basics
  • Introduction to Data Science
  • Machine Learning Fundamentals
  • Your First Neural Network
Start Path

Complex Variables

Deepen your understanding with more complex algorithms and frameworks.

  • Advanced Neural Networks
  • Computer Vision Projects
  • Natural Language Processing
  • Model Deployment
Start Path

Advanced Functions

Master cutting-edge AI techniques and research-level implementations.

  • Generative Adversarial Networks
  • Reinforcement Learning
  • Advanced NLP & Transformers
  • AI Research & Papers
Start Path

Featured Code Example

Understand neural networks by exploring this implementation of a simple XOR classifier

Simple Neural Network in Python


import numpy as np

# Simple Neural Network with one hidden layer
class SimpleNeuralNetwork:
    def __init__(self, input_size, hidden_size, output_size):
        # Initialize weights randomly
        self.W1 = np.random.randn(input_size, hidden_size) * 0.01
        self.b1 = np.zeros((1, hidden_size))
        self.W2 = np.random.randn(hidden_size, output_size) * 0.01
        self.b2 = np.zeros((1, output_size))
    
    def forward(self, X):
        # Forward propagation
        self.z1 = np.dot(X, self.W1) + self.b1
        self.a1 = np.tanh(self.z1)  # Hidden layer activation
        self.z2 = np.dot(self.a1, self.W2) + self.b2
        self.a2 = 1 / (1 + np.exp(-self.z2))  # Output layer activation (sigmoid)
        return self.a2
    
    def train(self, X, y, learning_rate=0.01, epochs=1000):
        for epoch in range(epochs):
            # Forward pass
            output = self.forward(X)
            
            # Backpropagation
            dZ2 = output - y
            dW2 = np.dot(self.a1.T, dZ2)
            db2 = np.sum(dZ2, axis=0, keepdims=True)
            
            dZ1 = np.dot(dZ2, self.W2.T) * (1 - np.power(self.a1, 2))
            dW1 = np.dot(X.T, dZ1)
            db1 = np.sum(dZ1, axis=0, keepdims=True)
            
            # Update weights
            self.W2 -= learning_rate * dW2
            self.b2 -= learning_rate * db2
            self.W1 -= learning_rate * dW1
            self.b1 -= learning_rate * db1
            
            # Print loss every 100 epochs
            if epoch % 100 == 0:
                loss = -np.mean(y * np.log(output) + (1 - y) * np.log(1 - output))
                print(f"Epoch {epoch}, Loss: {loss}")

# Example usage
X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])  # XOR inputs
y = np.array([[0], [1], [1], [0]])  # XOR outputs

# Create and train network
nn = SimpleNeuralNetwork(input_size=2, hidden_size=4, output_size=1)
nn.train(X, y, learning_rate=0.1, epochs=10000)

# Test the network
predictions = nn.forward(X)
print("Predictions:")
print(predictions)
            
Full Tutorial

Advertisement